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The spin-up of a thermally stratified Boussinesq fluid in a circular cylinder with 
insulated side walls is analysed under the conditions of strong stratification 
(Brunt-Vaisala frequency N 9 rotation frequency 0) and small Prandtl number. 
An earlier paper (Sakurai, Clark & Clark 1971) showed that complete spin-up 
is achieved in the Eddington-Sweet time. The present work considers in detail 
the spin-up transients corresponding to shorter time scales. 

The analysis reveals a complicated system of merging and bifurcating horizontal 
layers in the interior flow. Following the spin-up of the cylindrical container, 
a rotational shear layer, of the kind discovered by Holton (1965), forms near 
each horizontal boundary. At the same time, a thermal boundary layer begins 
diffusing outward from each boundary. When the thermal layer reaches the 
shear layer, the two merge and form a higher order layer, which diffuses at a rate 
proportional to ti .  At a later time, the layer splits into a steady layer and another 
diffusing layer, this time following a tt law. One important conclusion from the 
analysis is that the lifetime of the rotational shear layer is not great: it is of 
order (Q/lV)2 (R2/x) ,  where R is the radius of the cylinder and x is the thermal 
diffusivity . 

The problem of computing the angular velocity from the poorly converging 
series is dealt with in some detail, and graphs are given of representative values. 
The results show that, for spin-up, there are appreciable adverse gradients of 
angular momentum near the side wall, and thus there is some question about the 
stability of the spin-up configuration. 

Finally, a discussion is given of continuous spin-up of the container and the 
results are applied qualitatively to the solar spin-down problem. The principal 
conclusion is that the Ekman time scale is unimportant in the solar case. 

1. Introduction 
A problem of continuing interest in the theory of rotating fluids is the spin-up 

problem, in which one analyses the response of an enclosed rotating fluid to an 
increase in the angular velocity of the container. A basic parameter in the process 
is the Ekman number E = v/(L2s2), where v is the kinematic viscosity, 0 is the 
angular velocity and L is a characteristic container dimension. The fundamental 
analysis of Greenspan & Howard (1963) showed that, for small E,  the primary 
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mechanism for spinning up the contained fluid is the transport of angular 
momentum by secondary circulations. The circulations are generated in Ekman 
boundary layers which form on the non-vertical portions of the container wall. 
For an unstratified fluid, the angular velocity remains uniform in space while 
evolving on the Ekman time scale 

tEK = !2p1E-*, (1) 

(2) 

which is much shorter than the viscous diffusion time 

t ,  = L'/v = f2-lE-l. 

The situation for a stratified fluid is more complicated, sufficiently so to have 
caused a lively controversy for several years. The controversy has subsided, and 
the original picture emerging from Holton's (1965) work has been firmly estab- 
lished by the analyses of Walin (1969) and Sakurai (1969). According to their 
work, the secondary Circulations still operate on a time scale comparable with 
tER, but in the case of strong stratification, they are confined to regions near the 
boundary. The thickness of these regions is of order 

8,s = LQjiV, (3) 

where N is the Brunt-Vliisala frequency. Thus a,, < L if !2 < N ,  which we 
assume throughout this paper. The result of the circulations is a quasi-static, 
spatially non-uniform spin-up, confined to these layers. In  what follows, we shall 
call these rotational shear layers RX layers for short. The slow transition from 
this state of non-uniform rotation to the final state of uniform rotation comes 
about only because of the direct action of dissipative effects in the interior. The 
effects are viscous diffusion, with a time scale t, = L2/v, and thermally driven 
circulations, acting on the Eddington-Sweet time scale 

tES = ( N / ! 2 2 ) 2 ( L 2 / X ) ,  (4) 

where x is the thermal diffusivity. The relative importance of these mechanisms 
depends on the ratio 

If the Prandtl number B is sufficiently small, the final approach to uniform 
rotation is determined by the thermally driven circulations, and that is the case 
considered here. We also assume that the Eddington-Sweet time is longer than 
the Ekman time. Thus the parameter restrictions are 

tEs/tv = (N/Cl) '8 ,  L? = v /x .  (5) 

t,, < tEs < t,, or E* < ( N / ! 2 ) 2 P  < 1. (6) 

This parameter range is of particular interest in astrophysical problems, since (6) 
typically is satisfied in stellar interiors. 

Small Prandtl number spin-up has been analysed by Sakurai et al. (1971, 
called I hereafter). Their calculations showed that complete spin-up occurs on 
the Eddington-Sweet scale t,. Paper I did not, however, consider in any 
detail the spin-up transients corresponding to shorter time scales. The object of 
this paper is to study the surprisingly rich transient structure of the spin-up 
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flow. What emerges from the analysis is a complicated set of coalescing and 
bifurcating layers. An understanding of these layers is important for several 
reasons. In  the first place, they must be accounted for in numerical work of the 
kind necessary for nonlinear problems. In  the second place, such layers are of 
importance in the question of stability in spin-up. In  addition to studying the 
layer structure, the present paper clarifies therole of Ekman pumping in stratified 
spin-up. A specific conclusion of some interest is that the Ekman time scale is 
of no importance in the problem of solar rotation. 

As in I ,  the calculations here are carried out for a cylindrical geometry, 
primarily because it is the least complicated geometry which is still interesting 
for stratified spin-up. (Parallel disks, although simpler, are completely atypical 
(Sakurai 1969).) Some confidence in the suggestion that the cylinder is typical 
may be gained by comparing the work of Walin (1969) and Sakurai (1969) 
(cylindrical geometry) with the work of Clark et ab. (1971) (spherical geometry). 
The restriction to times shorter than tEs allows a further simplification in the 
geometry, since, in that case, the region of significant flow does not extend to 
the centre of the cylinder. Thus the layer structures on each end of the cylinder 
do not overlap and we can study the simpler case of the structure at one end of 
a semi-infinite cylinder. 

The problem is formulated in Q 2 and then solved by means of a radial expansion 
in Bessel functions and a Laplace transform in time. Section 3 gives a detailed 
qualitative picture of the complicated transient layer structure and a discussion 
of the role of Ekman pumping. In  $4, numerical results are given for impulsive 
spin-up. At the expense of some redundancy, a summary of the many time 
scales is given in $5.  Section 6 contains a discussion of the solar spin-down 
problem in the light of the present work. Sections 5 and 6 are reasonably self- 
contained, so that the reader interested only in the conclusions can skip the 
analysis of $$2-4. 

2. Basic equations 
2.1. Formulation 

We consider a semi-infinite circular cylinder of radius R. The interior (0 < z < co, 
0 < r < R) contains a stably stratified Boussinesq fluid. Initially, the fluid and 
cylinder are in uniform rotation with angular velocity Q. Then the container 
angular velocity is suddenly increased to (1 + e) Q, where e, the Rossby number, 
is small. The side wall (r = R) is insulated and the end plate (z  = 0)  is maintained 
at a fixed temperature. The problem is to compute the subsequent evolution of 
the fluid’s angular velocity. It is worth noting that, qualitatively, the results are 
not sensitive to  the thermal boundary condition on the side wall. This is shown 
clearly by the results in I, where both insulated and fixed-temperature side walls 
were analysed . 

I n  the formulation of the problem, we shall omit the thermally driven circula- 
tions associated with the centrifugal force (Barcilon & Pedlosky 1967). Such 
circulations give rise to non-uniform steady states of rotation. It is not hard to 
show that, in a linear theory, the transients connecting two such equilibrium 
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states are governed by the equations used in this paper. Thus, for the sake of 
simplicity, we omit the centrifugal force terms. 

The linearized equations in the Boussinesq approximation are the equation 
of motion 

(7) aulat = - 2n x u - aTg -P-~VP + V V ~ U ,  

the continuity equation 

and the thermal equation 
v.u = 0 

aT/at+pw = XVT. 

Here U is the velocity relative to the uniform rotation G? (in the positive z 
direction), a is the coefficient of thermal expansion, T is the perturbation 
temperature, g is the acceleration due to gravity (in the negative z direction), 
p is the constant mean density, P is the perturbation pressure, v is the kinematic 
viscosity, x is the thermal diffusivity, p is the constant temperature gradient 
in the unperturbed fluid and W is the vertical component of U. We can satisfy 
(8) and exploit the condit.ion of axisymmetry by introducing a stream function 9, 
defined so that 

U = -Vx($es)+Ves, (10) 

where el is the azimuthal unit vector and V is the azimuthal velocity. Both 9 
and V are functions of the radial co-ordinate r, the vertical co-ordinate z and the 
time t .  From (7) we get the following equations for $ and V :  

and aviat - VLYV = - 2~ a$iaz, (12) 

(13) where 

The thermal equation (9) becomes 

3 = V2 - r-2. 

--xV2T aT = p a  - - ( r 9 ) .  
at r ar 

The boundary and initial conditions are 

g = a $ - / a z = T =  V-&r=O at z = O ,  (15) 

+ = a$pr = aT/ar = V-&R = 0 at r = R (16) 

and $ =  V T = T = O  at t = 0. (17) 

2.2. Interior equations 
Significant simplifications may be introduced using boundary-layer theory. 
A systematic approach, involving expansions in powers of the Ekman number, is 
given in detail in I. Rather than repeat that lengthy analysis, we give a brief 
heuristic treatment here. The basic idea is that the viscous terms are important 
only in thin boundary layers. Thus they need be retained only in the boundary- 
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layer analysis (givenin1) andnot in the equationsfor the interior flow. The thermal 
diffusion term, however, (xV2T in (14)) must be retained in the interior equations 
in the case of small Prandtl number. We may simplify (1 1) since the circulations 
(characterized by $) are very slow and have negligible inertia. Thus the term 
2Y(P(a@/at) may be dropped. The resulting interior equations are 

2~ a v p z  = agaT/ar, (18) 

(19) 

and the thermal equation, which still has the form (14). 
We now put the equations in dimensionless form. It is convenient to introduce 

the Brunt-VSiisalSi frequency N and the stratification parameter S, defined by 
N 2  = apq and S = (N/SZ)2. As was mentioned in 0 1, we take S B 1. The proper 
scaling for the equations is easily obtained from the results of I. For the length 
scale, we choose the radius R of the cylinder. For the time scale, we take the 
Eddington-Sweet time tEs = SR2Ix. The azimuthal velocity is scaled by eRSZ 
and the stream function by &XIS. The temperature scale is eRQ2/ag. Then the 
interior equations (with the same notation for dimensionless quantities) are 

a vlat = - 2 1 ~  a+pz 

2aVlaz = all/&, (20) 

avp t  = - za@/az (21 1 

and 
i a  1 aT 

s at r ar 
V2T = - - (r$).  --- 

The solutions of these equations must be supplemented by boundary-layer 
corrections in order to satisfy the boundary conditions (15) and (16). The result 
of such an analysis (see I) is, conveniently, a set of effective boundary conditions 
to  be imposed directly on the interior flow: 

Zh$+V=r,  T = O  at z = O ,  (23h (24) 

and aT/ar+$ = 0 at r = 1. (25) 

The condition (23) comes from the Ekman-layer analysis, and 

where, by our earlier assumption (6), h < 1. The condition (24) is simply the true 
thermal boundary condition imposed directly on the interior flow-to be ex- 
pected, since the thermal diffusion term is present in the interior equations. 
The condition (25) is the statement that the radial component of the total heat 
flux (convective plus conductive) vanishes at the edge of the interior flow. 

The formulation is completed by the initial conditions 

T = V = O  for t = O .  (27) 

The initial condition on $ is dropped, consistent with the neglect of the inertial 
term a$/<% (see Greenspan & Howard (1963) for a full discussion). 
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2.3. Solution 

The solution of (20)-(22) satisfying the conditions (23)-(25) and (27) may be 
expressed as a series of Bessel functions. A detailed discussion of the expansion, 
including completeness and termwise differentiation, is given in I, so we only 
quote the results here. The expansions are 

and 

where J, and J1 are Bessel functions and yn is the nth positive root of J1 = 0. 
Insertion of these expansions into (20)-(22) (see I for details) yields the following 
equations : 

z a ~ l a . ~  = - yn T,, (31) 

av,/at = - 2a@,/az, (32) 

s-l aTolat = a2To/az2 (33) 

(34) and 

The boundary conditions (23) and (24) become 

S-1 a q a t  = Yn II., + a2Tnlaz2 - Y; T,. 

To=Tn=O at z = O  (35) 

and 2h@n + V,  = Pn, (36) 

where (37) 

with ~ n .  = 2/Yn Jz(Y~.)* (38) 

T o = T n = K = O  at t = 0 .  (39) 

The initial conditions (27) are now 

In addition, we require that the solution be well behaved as z --f GO. 

It is easy to show that To = 0. The rest of the solution is readily obtained by 
a Laplace transform in time. We denote the transforms by overbars and let p 
be the transform variable. Then one can show that 

and 
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where 

and 

(43) 

(44) 

The evaluation of the solution is discussed in $4. There is one simple result 
which we present here, namely, an expression for the azimuthal velocity V (  1,z, t )  
on the side wall. Since this is derived in detail in I, we only quote the result here. 
The Laplaee transform is 

F(I,  z ,p)  = ( p  + 2hp4)-1 exp [ - z(tp)*]. 

V (  I,  x ,  t )  = erfc (x/4t&). 

(45) 

For h = 0 (a case considered in detail later), the inversion is easily accomplished 
to give 

(46) 

3. Qualitative discussion of the flow 
3.1. Layer structure 

The principal features of the evolution of each radial harmonic are contained 
in (44). A description may be obtained in a straightforward way by identifying 
an and p, as reciprocal vertical length scales and p as a reciprocal time. The 
correctness of the description so obtained will be verified in the more quantitative 
discussion of $ 4. 

By examining the dependence of a: and P: on p ,  one finds three distinct time 
regimes: (i) t 4 (Y ,S ) -~  (corresponding to  p 9  AS')^), (ii) (ynS)-a < t < yn2 
(corresponding to y i  < p < (ynS)2) and (iii) t 9 yn2 (corresponding to p < 7:). 
We consider them in turn. For t < (y,S)-2, we have 

an - 1 4Yn 2 8, p: 21 p p .  
Thus there is a horizontal layer of constant thickness a;l= 2/(yn84), which is 
the basic RS layer. The other layer has a time-dependent thickness 

p i 1  = (X/p)& N (8 t )k  

The dimensional thickness is ( ~ t * ) $ ,  where t* is dimensional t,ime, and we see that 
the /3 layer is simply a thermal diffusion layer. For t < ( Y ~ S ) - ~ ,  the thermal layer 
is thinner than the €28 layer. This time regime ends when the growing thermal 
layer reaches the RS layer, at a time t - (Y,S)-~. At this time, the layers actually 
merge to form a single, higher order layer. This result is established by con- 
sidering the next time regime (ynS)-2 < t < yn2. In  that range 

so that both vertical length scales are of order ( t / y i ) i .  Thus there is a single layer 
which diffuses inward according t o  a t i  law. We shall call this flow regime the 
intermediate diffusion mode. As this regime ends (t  - y ~ ~ ) ,  the layer splits again 
into two layers. This is seen by examining a; and P: for t 9 yn2. We find that 
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Dominant terms in 
Time Layer type and thickness thermal equation 

Thermal diffusion layer N (xt*) * s-l(aT,/at) = (a2Tn/az2) s,*z 
X N s,* 

t* -g - Rotational shear layer for nth harmonic S-l( aT, I at) = yn ykn 

8x8 t* N - 
x 

Thermal and rotational shear layers S-l( aT,/at) = yn yk,, + ( a2Tn/az2) 
merge - 8: 

Intermediate diffusion layer 

X 
Intermediate diffusion layer 

bifurcates N (R/yn)  t* N t,* 

Harmonic layer N (R/yn) 
Final diffusion layer N R(t*/t&)* 

0 = (azTpC/&2)-yiTn 
O =  Yn@n-Y:Tn 

t* 9 t,* 

TABLE 1. Qualitative layer structure of interior flow as a function of time t*. The thickness 
of the rotational shear layer for the nth radial harmonic is a:, R is the radius of the cylinder, 
xis the thermal diffusivity, yn is the nth root of J1 = 0,  t:s = SR2/X is the Eddington-Swoot 
time based on the radius and t,* = SRz/(xy:) is a kind of Eddington-Sweet time for the 
nth harmonic. The last column shows the dominant terms in the (dimensionless) thermal 
equation (34). 

'v $p  and E y:. Thus there is a stationary layer of thickness ,8;* 21 y;l 
and a growing layer of thickness ail N 2tg. The stationary layer corresponds to 
a harmonic function in the temperature field. Such a function would be required 
by more general thermal boundary conditions than those considered in the 
present work. The other mode is a kind of diffusion mode which continues to  
propagate inward. We call this last mode the final diffusion mode. These con- 
siderations are summarized in table I. I n  that table, t* is the dimensional time, 
tgs = SRZ/x is the Eddington-Sweet time based on the radius, t,* = SR2/(xy2,) 
is a kind of Eddington-Sweet time based on the radial scale of the nth harmonic, 
and 82 = R/(y,Xt) is the thickness of the RS layer for the nth radial harmonic. 
Each radial harmonic has its own length and time scale. Thus the higher har- 
monics go through the sequence of states more rapidly. Nevertheless, the final 
penetration occurs on the same time scale for all of the radial modes: the penetra- 
tion law for the final diffusion layer is independent of n. This result is consistent 
with the quantitative results of I for a cylinder of finite height. 

The various flow regimes in table 1 may be characterized by the relative order 
of terms in the thermal equation (34). It is not hard to  make such estimates, and 
the last column in the table gives the dominant terms in the equation. Although 
the flow is driven by thermal diffusion, the time scale differs from L2/x (where L 
is the length scale) because of constraints imposed by mechanical equilibrium. 
Equation (20) shows that any change in the radial structure of the temperature 
field requires a change in the azimuthal velocity field. From (21)) it follows that 
such changes require circulations. Thus the thermal diffusion and motions are 
inextricably linked. The magnitude of the circulations is governed by the thermal 
equation (22), and the different regimes in table 1 correspond to dominance of 
different terms in the equation. 
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3.2. Elcman pumping and the parameter h 

The discussion so far, based entirely on a, and b,, takes no account of the 
boundary conditions. The amplitudes of the various layers depend on the 
boundary conditions, in particular on the parameter A. The fact that h < I 
suggests the possibility of the significant simplification h = 0. The analysis in 
this section shows that, for most purposes, we can take h = 0 provided that 
hSQ < 1. Since S % 1 (by assumption), this provides a definite criterion of 
smallness for A. 

We begin by examining the solution (40)-(44) for the case h = 0. One can 
show, after some calculation, that lim V + 0, in spite of the initial condition 

T/' = 0 at t = 0. Thus there is some instantaneous spin-up for h = 0. This is to 
be expected, since h -+ 0 corresponds to the Ekman time approaching zero. In  
fact detailed calculations show the following: the limit as t -+ 0 of the solution 
for h = 0 is equal to the limit as t --+ 00 of the adiabatic spin-up solutions of 
Sakurai (1969)and Walin (1969). Thusforhsufficientlysmal1,weget first adiabatic 
spin-up, followed by a thermal relaxation of the adiabatic spin-up state. From 
this picture, we can calculate how small h must be; for the correctness of the 
picture requires that the adiabatic spin-up time tns for the RS layer be much 
smaller than the time scale Sgs/x for thermal effects to penetrate the RS layer. 
From Walin (1969) and Sakurai (1969) we have (in dimensional form) tRs = X-h,,, 
hence we require 

t-0 

S-*t, < &SIX, 

or AX4 < 1. (47) 

If, on the other hand, AS* 9 I, thermal effects dominate the RS layer from the 
outset. In  the remainder of the present work, we assume that (47) holds. Then we 
may legitimately take h = 0, as long as we have no need to resolve the initial, 
rapid, adiabatic spin-up of the RS layer. 

The conclusions which have been sketched here can be obtained more formally 
by rescaling the equations in a way suggested by the results of Walin (1969) 
and Sakurai (1969)) and then studying the limit X -+ 00, h --f 0 with AS% -+ 0. 
The analysis is somewhat lengthy so we do not give it here. It is perhaps worth 
noting that an analysis of each radial harmonic replaces (47) with hSby, < 1, and 
we require this to be satisfied for all important harmonics. 

4. Quantitative results for impulsive spin-up 
4. I. Preliminary simplijications 

The computational problem is the determination of the coeEicients V,, $, and 
T,, and the subsequent summation of the series (28)-(30). In  earlier work on 
stratified spin-up, the series were poorly converging. The present work is no 
exception, and many terms are needed to  represent the solution with reasonable 
accuracy. Fortunately, the coefficients for different values of n are related by 
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a simple similarity transformation, so that it is only necessary to evaluate three 
functions rather than a triple infinity of functions. We write the expansions 
(28)-(30) as follows: 

m 

n= 1 
w, 2, t )  = I: PnR(rnx, r 3 ) J o ( Y n r h  (48) 

As the notation indicates, the functional form of R, W and 0 is independent of n. 
Thus I?([, r ) ,  W ( t ,  r )  and a([, r )  are solutions of 

zawlat = - R, (51) 

a W/ar = - 2a@/ag (52)  

and 8-1 aR/ar = a2RIap - R + a, (53) 

with W = R = O  for r = O  (54) 

and R = W - l = O  for [ = o .  (55 )  

In  addition, W ,  R and @ should vanish as [ -+ co. In  the formulation, we have 
taken h = 0, in accordance with the discussion of $3.2. The problem (51)-(55) 
is solved by Laplace transforms. We let p be the transform variable. Then the 
transforms F, R and 3i are given by 

and 

where { ;) = f (1 + $) T f { ( I  + ;)2 - p y . (59) 

In  performing the inversions, we note that the only singularities of the trans- 
forms are a pole at  p = 0 and branch points at p = 0, 00, which we connect by 
a branch cut along the negative real axis. By deforming the inversion contour 
around the branch cut, we get the following result for W ( t ,  7): 

dv(r&)-l exp ( - vzr) [cos ( A t )  - e-BE - @ / A )  sin (Ag)],  (60) 

where 
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Similar expressions may be derived for R and @. I n  what follows, however, we 
concentrate completely on W ,  as it is the quantity of greatest interest. The 
integration in (60), and the summation of the series (49), must be done numerically. 
Fortunately, a further simplification is possible. We can exploit the fact that  
S 9 1 and develop asymptotic expressions for the limit S -+ 00. This reduces the 
solution from a function of four variables (r,z,t,X) to one of three ( r ,z , t ) .  The 
approximation is not uniformly valid in time but, as the calculations show, two 
distinct limits suffice to cover the whole time range. I n  $4.2, we consider the 
long-time limit, obtained by taking S + 00 a t  fixed c and r. This limit is adequate 
for the description of the intermediate and final diffusion modes, but it misses 
the earlier merging of the RS and thermal layers, which occurs for r = O(5-2). 
I n  54.3, we rescale ,$ and r ,  by letting 7 = SSE and cr = S2r. The limit X -+ 00 a t  
fixed 7 and cr then gives a useful short-time approximation. The overlap of these 
two limits is established below. 

4.2. Intermediate diflusion mode 

We let S -+ 00 a t  fixed r ,  x and r. This is equivalent to dropping the thermal 
inertia term (aR/ar in (53)) and dropping the thermal initial condition (on R). 
It follows directly from (60) that 

lim w ( [ , ~ , s )  = V((,  T) = I + dv(np)-l exp ( - v27) 

x [cos (a t )  - e4E- ( b / ~ )  sin (at)] ,  (63) 

S + W  

where 

The integral (63) has been evaluated numerically for 0.01 < 7 < 100 and 
o < .$ < 100. I n  summing the series (49), it is necessary, because of poor con- 
vergence, to have values of for large ,$ and r ,  that is, we need @(ynz, yzt) for 
large yn. We get these values by an asymptotic expansion of @ for r -+ co with 
5 = .iJ2rH fixed (for 6 = ymz and r = yz t ,  we have 6 = z/2t)). Such an expansion 
is obtained by lengthy but straightforward calculations from (63), and the 

where 

With @ replaced by the expansion (64), the series (49) becomes 



572 A .  Clark 

where we have used (37), where 5 = z/(2tt) and where 
m m 

~ ( r )  = E PnYnlJ1(Ynr), ~ ( r )  = C PnYi2Jl(Ynr) (67 1 

and En = E(yn2, ?it). (68) 

n=l n=l 

The series for G and H can be summed numerically. They are alternating series 
with terms of magnitude n-2 for G and n-3 for H .  The coefficient En is calculated, 
for y:t < 100, from (64) with numerical integration for m. For y i t  > 100, En is 
calculated from (65) by dropping the 0 ( r 2 )  term. The series in (66) is then sum- 
med numerically. Since pnEnJ,  = O(n-4), there are no real difficulties with 
convergence. 

As r -+ 0,  convergence becomes worse than the above estimates would indicate. 
This can be seen from the formula for r = 0. If d = v / r ,  then it follows from (66) 
that 

The convergence is not as good, since pn ynEn = O(n-B). 
For r -+ I, we may make use of the exact result (46) to get 

P ( ~ , x , t )  = erfc(&<), ( 70) 

an explicit formula for the velocity on the side wall. 
These formulae have been used to compute d for various values of r ,  z and t .  

The values were all computed as described above, except for the small range 
o < r < 0.05, in which extrapolation was used. The principal features of the 
solution can be seen in figure 1, which shows 0 as a function of r ,  for four values 
of 2 at each of four times. For the smallest time (t  = O e O l ) ,  there is much greater 
spin-up near the centre than a t  the side walls. Spin-up on the side walls requires 
boundary-layer suction into the side-wall layer, and this takes time to develop, 
because density diffusion is required to  break the constraint of buoyancy forces 
on the material in the side-wall layer. The Ekman suction, on the other hand, 
begins immediately. Thus the side-wall spin-up lags behind the axial spin-up. 
The resulting adverse gradient of angular momentum strongly suggests the 
likelihood of a rotational instability, a somewhat unexpected result for spin-up. 
For somewhat larger times ( t  = O * l ) ,  the spin-up has penetrated further in the 
z direction, and the radial profiles are somewhat flatter. For t = 1.0, the profiles 
are fairly flat and for t = 10.0, the profiles are within 3% or less of being perfectly 
flat. This is consistent with the analysis, since it follows from (66) that 

d --f erfc (46) 
as t -+ 00 (at fixed 5) .  The numerical results show that this asymptotic state 
(called the final diffusion layer in 3 3) is reached for t 2 I. 

To compare the present results with the small-time limit of $4.3, we need an 
asymptotic formula for small 7. For T < 1, the integral (63) may be approximated 
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FIGURE 1. Angular velocity 5 in the long-time limit as a function of radius r for selected 
values of height z at (a) t = 0.01, ( 6 )  t = 0.1, (c) t = 1.0 and (d )  t = 10.0. The unit of time is 
the Eddington-Sweet time and the unit of height is the cylinder radius. 

by observing that the large values of v are important, so that we can take 
q N v, a 2: b N- (4v)i. Then we get 

w N P(h)  = 1 + du(27ru)-l e-% [COS (A&) - exp ( - A d )  - sin ( A d ) ] ,  (71) 

where A = c/(47)f is the natural similarity parameter for small times. Thus 
W(y,z,y:t) is asymptotic to F ( h )  with h = y,z/(4y;t)* = x(yi / t ) t .  

T+O 1: 



574 A .  Clark 

4.3. Merging of thermal and RS layers 

The proper length and time scaling for this flow regime are determined by the 
thickness S-9 of the RS layer and the time S-2 a t  which the layers merge. Thus 
we introduce 

From (49) we have 
ZJ = S ~ Z ,  T = S2t. 

M 

Y = X p,W(yns-'y, Y&S-~T) J ~ ( Y ~ Y ) *  
x=1 

W'e abbreviate yn y by 7 and y t T  by a. Then from (60)-(62) we get 

2 
where 

I n  this limit, 

{ &) = {*[ rt v 2  + ( v 4  + v2)6]):. 

The connexion with the formulae of $4.2 is easily made. It is not difficult to 
show from (74) that 

where F is defined by (71) ,  and ,u = 7 / ( 4 ~ ) 4 .  Then $(y,y,y&T) is asymptotic to 
T ( p )  with 

Thus the long-time limit of the present (short-time) solution agrees with the 
short-time limit of the previous (long-time) solution, and this ensures that the 
two differentAS -+ 00 limits cover the entire range. 

Values of TY are obtained from (74) by numerical integration. For large values 
of g, it is more convenient to work with the form 

T%7, a) q p ) ,  as 0- -+ 00, 

P = YnY/(4Y&T)4 = z(y&/t) t .  

A 2 1; dv exp [ - v4/( 1 + evz)] ( sin (KV) KV 

- exp [ - (1 + ev2):] 1 cos (KV) - w( 1 + e v 2 ) B  (1 4- s v 2 ) B  
W(7,a) = l+; 

(76) 
A 

where e = 21a4 and K = 91/(4a)g. The summing of the series requires W(yn y, y i T ) ,  
and since the convergence is poor, we need the valuesAfor large n. Although 
analytical asymptotic formulae can be developed for W(7 ,  a) as CT +- co with 
7 2 / ~  fixed, it turns out to be more accurate and convenient simply to evaluate 
(76) numerically. Even for IT = loG there are no difficulties with the integration. 
Thus the computational basis for determining p(y,  T) is (74)-(76). 

There is one complication with the small-time limit considered here, and that 
is the fact that different radF1 harmonics evolve at  different rates. For large n, 
the argument v = YET of W can become so large that the small-time limit is 
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r r 

FIGURE 2. Angular velocity C2 in the short-time limit as a function of radius r for selected 
values of height y at  ( a )  T = 0-1 and ( b )  T = 1.0. The unit of time is t ~ ,  the time at  which the 
thermal layer and the rotational shear layer merge. The unit of height y is the thickness of 
the rotational shear layer. 

.A 

no longer valid. In  order to use the series (75)  without modification, T must be 
sufficiently small that y i T  remains in the small-time range for all important 
radial harmonics. Another way to state the constraint is that, for any given T ,  S 
must be sufficiently large (making X larger increases the small-time range). 

only for moderate values 
of T .  The results are shown in figure 2, which gives 6 as a function ofr for various 
values of y ,  for T = 0.1 and 1.0. The adverse angular momentum gradients near 
the side wall are even more pronounced here than in the long-time limit. As one 
can show from (46), there is no spin-up on the side wall in the short-time limit. 

Some insight into the nature of the two layers max be obtained from further 
analysis. We starb with the representation (74) for W ( p ,  0). One can show that 

Because of this, we have carried out calculations of 

a result which is most easily established from the Laplace transform of the solu- 
tion. This is just the instantaneous spin-up of the RS layer. By combining (77)  
and (74), we get 

where 

is the RS-layer portion of the solution and 

(78) 

(79)  

is the thermal-layer portion. The distinction is meaningful only before the two 
layers have merged, that is, for small cr. For small v, we may use the approxima- 
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tions A N v, 
h 

N 5 and (1 + v2)t N v. The resulting integrals can be evaluated, and 
we get 

where 

is the exponential integral of order I. The principa, result from these formulae is 
tha: I WTl < I14ksl in this regime. (For example, WRs(O, cr) = I + (c~/n)4, whereas 
- WT(O, CT) = o/n* < 1.) Thus before the layers merge, the angular velocity 
increment is carried by the RS layer. 

h A 

5. Summary of time scales 
We give here a qualitative summary of the various time scales and the role they 

play in spin-up. We do not consider the individual radial harmonics, so the dis- 
cussion is less accurate than that in $3.1.  We consider the time scales in order of 
increasing size, and the discussion presumes the ordering of time scales given 
in § 1. We use dimensional quantities throughout this section. 

The smallest time scale is the rotation period Q-l. This is the time it takes the 
Ekman layer to form, after the impulsive spin-up of the boundary. The Ekman 
pumping begins to create an RX (rotational shear) layer of thickness S,, = RX-4. 
The (non-uniform) spin-up of the RX layer is complete in a time 

tR, = Qt-lS-*E-* = ( S ; ~ / V S Z ) S .  

For times greatly exceeding tXs,  the drop in s1 across the Ekman layer is very 
small, and may be ignored (that is, we may take h = 0 in the boundary condition 
(23)). Meanwhile, a thermal layer, of thickness S,, generated a t  the wall, is 
diffusing outwards according to the law 6, = (Xt)*. This layer merges with the 
RX layer at a time t ,  = S&,/x. During the iime range t ,  < t < tM,  the angular 
velocity is quasi-steady, and the total applied increment As1 in angular velocity 
occurs across the RS layer. After the layers merge, the angular velocity diffuses 
inwards in what we have called the intermediate diffusion mode. I n  this regime 
( t  > tLn), the angular velocity increment AQ is distributed over a layer of thick- 
ness 6,  = R(t/t,)t, where tE,  = SR2/x is the Eddington-Sweet time. For a 
cylinder of aspect ratio near unity, or for a sphere, the spin-up processis essentially 
over for t N tEs. For a cylinder with height H 9 R, the process continues in what 
we have called the final diffusion mode, which reaches the centre at  a time SH21x. 

It is woi+,h noting that the thermal diffusion (Kelvin-Helmholtz) time scale 
tKH = R ~ / x  does not play an important role in the spin-up process. As is shown 
by (33), the average temperature To(x, t )  on equipotentials adjusts on this time 
scale. No buoyancy forces are associated with variations in To, so such adjust- 
ments play no role in spin-up. 

The case of continuous spin-up adds another time scale, namely the time scale 
t ,  on which the boundary velocity is changed. The character of the resulting 
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spin-up depends on where tB fits into the hierarchy of internal time scales. Those 
internal processes with scales comparable with or larger than tB will determine 
the distribution of angular velocity. If, for example, t M  tB < tE#, then the 
complicated description of the thermal layer, the RS layer and their merging 
is unnecessary. The angular velocity distribution can be calculated by using only 
the large-time solution of $4.2. Thus if Q,(t) is the boundary value of the in- 
crement in Q, then for tB $ t M  we have 

V ( r , z , t )  = /:cit’Y(r,z,t-t’) stB(t’). (83) 

An important quantity which depends on the time scales is the gradient of 
angular velocity. For impulsive spin-up, the maximum gradient is AQ/rY,,, where 
AQ is the boundary increment. This gradient persists until t > t M .  The same is 
true for continuous spin-up if t ,  < tM. If, however, tB > tM, but t ,  < tEs, then 
an estimate of the gradient is AQ/rY, = (AQ/R) (tB/tE&. Finally, for tB @ tEs ,  
the gradient is comparable with (AQ/R) (tES/tB).  

6. Solar spin-down problem 
The suggestion by Dicke (1964) that the interior of the sun rotates more 

rapidly than the visible surface layers has generated considerable interest in 
spin-down under solar conditions. The basic picture is the following. The magnetic 
solar wind exerts a non-negligible torque on the sun. The effects of the torque 
are distributed rapidly throughout the outer, turbulent convection zone. The 
question which bears directly on the Dicke hypothesis is that of the efficiency of 
angular momentum transport in the inner, convectively stable portion of the sun. 
Transport processes which take much longer than the age of the sun (5 x 109yr) 
are not of interest. As Dicke (1964) and others have pointed out, viscous diffusion 
falls into this category, since the time scale is abouk 1013yr. 

The possible importance of the Ekman spin-down process was first suggested 
by Howard, Moore & Spiegel (1967). It is generally agreed that the interface 
between the interior and the convection zone should behave in some sense like 
an Ekman layer. As pointed out by Howard et al. (19679, the coupling between the 
two regions is greatly enhanced by entrainment. Bretherton & Spiegel (1968) 
have attempted to account for the entrainment by treating the convection zone 
as a porous solid. Their analysis shows that, in such a model, the pumping is very 
efficient;; in fact, they find a characteristic spin-down time of the order of days. 
Clark, Thomas & Clark (1969) have accounted for entrainment in a somewhat 
different way. They point out that the transfer of angular momentum between the 
convection zone and the interior occurs mostly in the layer of penetrative con- 
vection separating these regions. This region of mixing then acts like an Ekman 
layer. Its thickness SEK, however, is determined entirely by the properties of 
the convection, and not by the rotation rate. On the basis of Roxburgh‘s (1965) 
work, the thickness may be estimated as a,, = 500km. The corresponding 
spin-down time is L/QSE,, which for L = 5 x 1010cm (the inner radius of the 
convection zone) and Q = 5.7 x 10-6s-f (the value suggested by Dicke) is of 

37 P L M  
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the order of 6 months. The spin-down times t ,  for the rotational shear layer are 
even shorter. The Bretherton-Spiegel picture gives a time of a few hours; the 
penetrative convection picture gives t ,  of the order of a week. Although the 
time scales given by the two pictures differ somewhat, they are equivalent in the 
sense that both are much smaller than any time scales relevant in the interior 
dynamics. We consider next what these short Ekman spin-down times actually 
mean. 

The Ekman time scale is simply a measure of the length of time over which 
an appreciable lag in angular velocity can persist across the Ekman layer. 
Alternatively, we may regard the Ekman layer as a pump, and the Ekman time 
scale as a measure of the internal impedance of the pump. Whether or not we 
get spin-down on the Ekman time scale depends entirely on the nature of the 
interior fluid, or in terms of the analogy, the spin-down time will depend on the 
impedance of the interior ‘load’ on the pump, as well as the pump impedance. 
I n  the present case, the interior impedance is dominant, since the interior time 
scales ( tM,  tES, etc.) are all so very much longer than the Ekman time scale. I n  
addition, the boundary time scale t, is surely much greater than the Ekman time 
scale. I n  this situation, the Ekman pumping is so efficient that no AQ can be 
built up across the Ekman layer, and the parameter h in the boundary condition 
(23) may be set to  zero. The resulting Ekman circulations are far smaller than 
the maximum possible Ekman currents, and their magnitude is determined by 
t, and the interior dynamics. This is in great contrast to the case of the impulsive 
spin-up of an unstratified fluid, in which the dominant impedance is the Ekman 
layer itself, with the result that the Ekman time scale is the spin-up time. 

On the basis of the above picture, we summarize the procedure to be followed 
in performing a solar spin-down calculation. There is a single field of meridional 
circulations which is driven throughout the volume by thermal imbalances 
associated with the centrifugal force and at the boundary by Ekman pumping. 
The equations governing these circulations are the usual equations of the 
Eddington-Sweet theory (see, for example, Mestel 1965), plus the spin-down 
equation which relates the local change in Q to  the meridional circulations. At 
the boundary, there are several boundary conditions on the interior flow: 
a thermal boundary condition, and a no-slip condition on Q. No conditions are 
imposed on the meridional circulations a t  the boundary. It is to be emphasized 
that the solution in no way depends on the Ekman time scale, provided only that 
the Ekman scale is much shorter than the relevant interior and boundary time 
scales. 

Apart from possible instabilities, the time scale for spin-down, determined by 
the interior dynamics, is the Eddington-Sweet time scale (Howard, Moore & 
Spiegel 1967; Sakurai et al. 1971). If the interior of the sun is rotating as rapidly 
as Dicke suggesbs, then this time scale is comparable with the age of the sun. 
Several authors have proposed instabilities which might greatly shorten the time 
for spin-down. Goldreich & Schubert (1967), for example, have demonstrated the 
existence of a Rayleigh instability, in which the stabilizing effect of stratification 
is expunged by thermal relaxation for disturbances of sufficiently small scale. 
This instability and its consequences have been much discussed (see Dicke 1970; 
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fiicke & Kippenhahn 1972 for reviews) but its importance for the sun is still 
uncertain. 

Howard et al. (1967) have conjectured that the rotational shear layer becomes 
unstable. Spiegel (1972) has discussed the possible consequences in some detail, 
and he suggests that spin-down may occur through a sequence of such instabilities, 
each one extending the zone of turbulence inward by the thickness of an RS 
layer. Let us consider this conjecture in the light of the present work. The RS 
layer, of thickness S,, = RX-B, has a lifetime of order tx = SSs/x. From Weyman's 
solar model as tabulated by Schwarzschild (1958, p. 259), we get the following 
estimates of parameters near but below the inner boundary of the convection 
zone : 

x = 3-5 x lo7 cm2/s, N = 1.5 x 10-3s-1, R = 5 x 1O1O cm 

(inner radius of the convection zone), hence S,, = 1.9 x lo9 ern and t M  = 3000yr. 
If tB is the time scale for the boundary spin-down, then the change AQ in Q 
across the RS layer is AQ N ( t J f / tB )  a. The associated shear in linear velocity is 
8 = RAQ/6,,. Thus the Richardson number is roughly given by 

S = (N/Q)2 = 700, 

J = (N/S)' = (NS,/RAQ)' = ( t B / t M ) 2 .  (84) 

Stability requires J 2 1, so we expect stability i f tB  exceeds +tM = 1500yr, which 
it surely does. Estimates for other instabilities can be made, but it is clear from 
the above numbers that no appreciable gradients, and hence no instabilities, are 
to be expected for tB t M .  

For helpful discussions of the spin-down problem and for reading the final 
manucript, I thank Dr E. R. Benton, Dr P. A. Clark and Dr J. H. Thomas. 
I acknowledge many stimulating discussions of spin-down with Dr Takeo 
Sakurai in the early stages of this work. 
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